Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study documents the capabilities of the StreamSonde, a lightweight (24 g) instrument manufactured by Skyfora that measures atmospheric temperature, pressure, humidity, and wind velocity. Unique features of the StreamSonde are its wind speed accuracy enabled by a dual-band Global Navigation Satellite System (GNSS) receiver, the ability to vary the terminal fall velocity, a theoretical maximum communication distance between the instrument and the deployment aircraft of 250 km, and the ability to simultaneously operate up to eight instruments (50 in the future). Skyfora’s GNSS receiver receives signals on two bands from U.S. global positioning system (GPS) (L1/L5), European Galileo (E1/E5a), and Chinese BeiDou (B1I/B2a) satellites to calculate the wind speed. The combination of dual GNSS and lower terminal fall velocity results in more accurate wind retrievals than from single-band GPS potentially allowing us calculate turbulence quantities, especially near the surface. StreamSondes were launched as dropsondes from the NOAA P-3 aircraft in both clear-air low-wind testing environments and in Hurricane Nigel (2023). The pressure, temperature, humidity (in clear air), and derived wind velocity collected by the StreamSonde compare favorably to the widely used RD41 dropsonde that was developed at the National Center for Atmospheric Research (NCAR) and is manufactured by Vaisala. At coreleased drops in Hurricane Nigel, mean absolute differences between RD41 dropsondes and StreamSondes are generally below 1°C for air temperature, 1.5 m s−1for wind speed, and 6° for wind direction. The benefits of using the StreamSonde instrument along with planned improvements to the platform are discussed. Significance StatementThis study presents proof of concept for operational deployment of a new, lightweight atmospheric profiler called the StreamSonde in a tropical cyclone. It uses advanced positioning technology to accurately measure three-dimensional wind velocity, has an adjustable terminal velocity, and can be deployed in “swarms” of sensors that have up to eight (50 in the future) instruments simultaneously active. The versatility of this emerging technology makes it useable for many meteorological applications.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract The global positioning system dropwindsonde has provided thousands of high-resolution kinematic and thermodynamic soundings in and around tropical cyclones (TCs) since 1997. These data have revolutionized the understanding of TC structure, improved forecasts, and validated observations from remote sensing platforms. About 400 peer-reviewed studies on TCs using these data have been published to date. This paper reviews the history of dropwindsonde observations, changes to dropwindsonde technology since it was first used in TCs in 1982, and how the data have improved forecasting and changed our understanding of TCs.more » « less
-
Sexual assault and sexual harassment (SASH) in STEM is a well-documented problem, particularly in academic and fieldwork settings (NASEM, 2018; Kelly and Yarincik, 2021; Ackerman et al., 2023). Historically marginalized groups in STEM (i.e., white women; Black, Indigenous, and other people of color; LGBTQ+ individuals) are particularly vulnerable to SASH due to underrepresentation and persistent, long-standing cultural norms shaped by dominant male and white identities. For individuals who hold multiple marginalized identities, the risks and impacts are compounded (Cech, 2022). SASH results in negative impacts to individual mental health and physical safety, productivity, and employee retention, and represents a barrier to entry, retention, advancement, and success of a diverse STEM workforce. To address this, culture change within STEM, the process of shifting organizational norms to promote improved employee wellness, inclusion, and productivity, is needed.more » « less
An official website of the United States government
